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Summary

The low-gravity environment provided by space flight has
afforded the science community a unique arena for the study

of fundamental and technological sciences. However, the

dynamic environment observed on space shuttle flights and

predicted for Space Station Freedom has complicated the

analysis of prior "microgravity" experiments and prompted
concern for the viability of proposed space experiments

requiring long-term, low-gravity environments. Thus, isolation
systems capable of providing significant improvements to this
random environment are being developed. This report deals

with the design constraints imposed by acceleration-sensitive,

"microgravity" experiment payloads in the unique environ-

ment of space and a theoretical background for active isolation.

A design is presented for a six-degree-of-freedom, active,
inertial isolation system based on the baseline relative and

inertial isolation techniques described.

Introduction

Interest in vibration isolation for microgravity experiments

has increased within the microgravity science community as

the space shuttle flight program has progressed and the small,

but significant, levels of residual acceleration on the shuttle
have become more widely recognized and documented (refs. 1

and 2). These residual accelerations result from several sources
characteristic of the orbiting carrier and the orbital envir-

onment. Very-low-frequency (constant cycle to 10 -3 Hz)

accelerations due to drag, tidal effects, and gravity gradients
contribute microacceleration levels g/go. (All variables and

constants are defined in appendix A.) Orbiter thruster activity
can contribute 10 -4 to 10 -2 g/go accelerations with

significant duration, but these can be predicted and controlled.

The most significant and troublesome contribution to most

experiments is the moderate-frequency (10 -3 to 100 Hz)

dynamic spectrum of accelerations having magnitudes in the

range 10 -5 to 10 -2 g/go. This dynamic background is pri-

marily due to random excitations from manned activity on the
orbiter as well as small thruster firings for orbit-keeping

maneuvers. However, orbiter structure and flight systems also

contribute observable intermittent and resonant accelerations

to the background as the orbiter interacts with its dynamic
mechanical and thermal environment.

To categorize the disturbances which are present in the space
shuttle and which will be present in Space Station Freedom,

the accelerations are grouped into three frequency ranges

(ref. 3): (1) quasi-static external disturbances, (2) low-

frequency vibration sources, and (3) medium- to high-

frequency vibrations. The first category includes aerodynamic

drag, gravity gradient effects, and photon pressure accel-
rations. The second category includes excitations due to large

flexible space structures, crew motion, spacecraft attitude
control, and robotic arms. The third catagory includes

disturbances due to onboard equipment such as pumps and

motors having a frequency range of about 10 Hz and higher.

The range of accelerations observed on several shuttle missions
or estimated for the accessible orbit is given in table I (refs. 1,

4, and 5).
The evolution of the Freedom Station design has led to

potential limitations on long-term, low-gravity experimentation
in this environment. It is now obvious that most of the true

"microgravity" experiments will require isolation from this

random milli-g environment if reproducible and useful results

are to be expected. Because a large part of the transient
disturbances have a frequency range from millihertz to 1 Hz,

it is extremely difficult to design passive isolation systems with
a resonance frequency of, at most, 1/x/2 times the lowest

excitation frequency of interest, mainly the subhertz range.
The serious limitation of passive isolators is the absence of
materials which have useful ranges of both low modulus

(providing low frequency) and appropriate damping (to avoid

large-amplitude oscillation). Two-stage passive isolators can
decrease the frequency range; however, limited damping leads

to potentially unstable systems in the random excitation
environment.

Passive isolation systems require extremely low stiffness for
the isolation of small disturbance frequencies for typical values

of mass associated with microgravity space experiments. In

contrast, when there are direct disturbances to a payload, a

small value of stiffness is not desirable. Thus, there is a

tradeoff, and an optimal design would need to compensate for

both direct disturbances, if present, and low-frequency base

disturbances. Active systems offer significant advantages over

passive systems in the orbital acceleration environment. This
is due to the extremely small stiffnesses needed to isolate

against such low-frequency base disturbances and the added

capability needed to adapt to direct disturbances for the optimal
isolation of a payload. In addition, since the responses to these



TABLE I.--ACCELERATION DISTURBANCES

Source Acceleration, Frequency,

g/go Hz

Quasi-steady or constant cycle

Aerodynamic drag

Light pressure

Gravity gradient

10 -7 0 to 10 -3

10 -8 0 to 10 -3

10 -7 0 to 10 -3

Periodic

Thruster fire (orbital) 2 × 10 -2 9

Crew motion 2 x 10 -3 5 to 20

Ku-band antenna 2 x 10 -4 17

Nonperiodic

I
Thruster fire (attitude) ] 10 -4 1

Crew pushoff l 10 -4 I

two excitations require conflicting solutions, a closed-loop

system is dictated for the control of both types of excitation
disturbances.

Active systems require sensing of motion or position, and

a feedback or feedforward control loop, or both, to counteract
mechanical excitation and to minimize motion of an isolated

body. Such systems introduce the complexity of a high-gain

control system, but offer significant advantages in versatility

and performance (ref. 4). To achieve a broad spectrum of

isolation, both feedforward and feedback control loops are used

in the isolation system design presented. This approach
references the isolated payload to an inertial frame rather than

to the dynamic support reference frame.

This report gives a theoretical background evaluation of both

a fully magnetically suspended, one-degree-of-freedom system

and a passive static support system (i.e., supported by a spring)

with inertial electromagnetic damping. (A detailed description

of the one-degree-of-freedom attractive relative suspension

system appears in appendix B.) The fully magnetically

suspended system was evaluated by using an attractive

electromagnet, while the electromagnetically damped system

was evaluated by using a Lorentz magnet. Magnetic systems

of the attractive type have been used to suspend rotating shafts
for a number of years, and the required negative feedback

loops to control such systems have been discussed in numerous

papers, giving the equivalent stiffness and damping coefficients
for specific controllers (ref. 6). However, these studies have

not treated the isolation of the suspended body from both direct

and base excitations, and the response of such generic

suspension systems to these types of disturbances has not been

documented. In addition, designers of these rotating systems

have not dealt with the inertial isolation of the rotating system

or of the suspension environment, which could help reduce
mechanical noise. Therefore, the dynamic response to base

and direct disturbances of both systems has been evaluated.

Upon completion of this theoretical background development,

the design of a prototype six-degree-of-freedom system based

on both relative and inertial isolation techniques is presented.

This prototype fulfills the broad spectrum of requirements

produced by the dynamic environment for space-based
experimentation.

Pictorial representations of both baseline systems evaluated

are shown in figure 1, where each system is represented by
an isolator between a base support and the isolated payload.

The isolator is simply an actuator which is driven in proportion

to certain feedback or feedforward signals, or both, depending
on the desired response of the payload. For the attractive

magnetic actuator, it is assumed that both the stiffness and the

damping coefficient are derived from a relative position sensor.
For the electromagnetic damping isolator, a Lorentz actuator

is analyzed where the damping coefficient is derived from an

inertial sensor and the stiffness is simply that of a passive
spring. The background formulations of these systems have

been separated in order to demonstrate the dynamic response
of a payload to both relative and inertially based isolation

systems. The six-degree-of-freedom inertial isolation design
is based on a combination of both techniques.

The primary purpose of this activity is to use digital active

control on dependent multidegrees of freedom. As part of the

project, a six-degree-of-freedom system based on this proto-

type design will be tested under a full six-degree-of-freedom
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Figure l.--Physical representation of active isolation systems.



free-fall condition on the NASA Lewis Learjet to acquire the

coupled response between all six degrees of freedom in a low-

gravity environment.

Theory and Formulation of Baseline

Systems

The active isolators described in this report are effective at

frequencies above 0.01 to 0.1 Hz. This constraint arises not
from technology limitations, but from practical limitations on

the stroke needed to isolate against the very low frequencies.
Volume constraints in the shuttle and in the future Freedom

Station manned environment laboratory modules limit the

stroke of any support system. Aerodynamic drag, for example,

acts on a solar-pointing station with a frequency equal to that

of the orbital frequency (about 90 rain per orbit). Although

drag is a function of the atmospheric conditions during a
specific mission, an average g/go of 10-7 will be used. Thus,
the distance Freedom Station would travel under such an

acceleration would be 2(aM02), or 1.5 m (4.7 ft), where

0_=27r/(90x60) rad/sec and a=(9.81 m/sec2) x(10 -7 g/go),

not including initial conditions. Thus, an isolated payload
would be forced to follow such a large spacecraft displace-

ment, but be active in a much smaller region. This active

region would depend on the volume constraints of a pay-
load in the shuttle or in the Freedom Station microgravity

module.

The following two baseline cases assume the use of an

attractive electromagnet and a Lorentz force actuator,

respectively, and can be analyzed as spring-mass-damper
systems. It is assumed that the spring and damper char-
acteristics for the attractive electromagnet and the damping

characteristics for the Lorentz actuator are actively controlled

and translated into actuator response by a control law

dependent on the response characteristics desired. Using an
attractive electromagnetic actuator, one can produce forces in

only one direction. Therefore, to achieve a push-pull config-

uration one needs to use two apposing electromagnets acting

on an armature. Figure 2 illustrates the two general magnetic

actuator configurations: the attractive electromagnet and the
Lorentz force actuator. For the attractive electromagnetic

actuators, the force produced by one magnet is proportional

to the square of the current and inversely proportional to the

square of the gap. Figure 3 shows the magnetic circuit

actuator's squared dependence on current. Because of these
nonlinear characteristics, a bias current linearization technique

is used. Thus, the bias current ib is used to produce a nearly
linear control law such that, for small disturbances about this

current, the control force produced can be assumed linear.

In order to control this system, one must close a control loop

around position and velocity feedback signals with a bias

current to work in the more linear regime of the force-versus-

current plot of a magnetic circuit, as shown in figure 3. Other

nonlinearities due to hysteresis and saturation arise between

(a)

,1 I
(b)

(a) Attractive electromagnetic actuator.

(b) Lorentz force actuation.

Figure Z--General magnetic actuator configurations.
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Figure 3.--Squared dependence of magnetic-circuit actuator on current (ib

is bias current; gap h I < h 2 < h 3 < //4).



magnetic flux and input coil current, but are not significant

with proper care of the system design.

In contrast, the Lorentz actuator can produce forces bi-

directionally. The force produced by a Lorentz actuator is a

vector quantity equal to the cross product of current and field

_b. Therefore, depending on the direction of current flow in

the coil, one can produce a force in either a positive or negative

direction. Because of this actuator's linear dependence on
control current, linearization is not needed, and this actuator

is open-loop stable. The Lorentz actuator thus has advantages

over the magnetic circuit actuator, but requires more power

to produce a certain force than does the magnetic circuit

configuration. However, the forces needed to control a payload

in the "weightless" environment of space are small, and this

inefficiency is not as limiting as on the Earth.

The basic concept behind these active feedback isolation

techniques is to sense position, velocity, acceleration, or

velocity and acceleration, and then to drive an actuator 180 °

out of phase with this signal in order to cancel a disturbance

to the payload. If there is knowledge about certain dis-

turbances, a feedforward loop can anticipate an excitation and

react without an error signal. Thus, the optimal dynamic

response for microgravity experiments to known and sensed
orbiter environments would result from the inertial isolation

of a body by a feedforward/feedback type controller. Such
a controller does not circumvent the need for relative

information of the payload in order to follow the large motion

disturbances without exceeding boundary conditions (i.e.,

volume constraints). These active isolation techniques can be

implemented by using either analog or digital control schemes

to close the feedback and feedforward control loops.

Base Disturbance Formulations for

Baseline Systems

The responses of the magnetic circuit isolator and the

Lorentz electromagnetically damped system in one degree of
freedom are evaluated by their transmissibilities and effec-

tiveness in isolating against both base and direct disturbances.
To summarize, these transmissibilities and effectiveness

functions are given with a brief description of their

formulation. (Appendix C gives a detailed analysis of the

transmissibility and effectiveness formulations and their results

for a variety of feedback schemes.) First, the responses, or

transmissibilities, of both systems are generated for harmonic

base excitations by using the active isolation system's

differential equations of motion. These equations of motion

are formulated by using Newton's first and second laws, where
the base displacement u is actually a time function, so that

u = u(t). The same is implied tbr a directly applied force such

that, in actuality, F = F(t). Therefore, for a spring-mass-

damper system, the equations of motion for base excitation

become, for the magnetic circuit isolator,

m _+k,,q(X-U) + c,,q dtt =0
(1)

and for the electromagnetic damping isolator,

d2x dx

m_+c--+Kx=Ku (2)dt

These systems look very similar to passive viscoelastic

systems with the exception that, for all practical purposes, both
the stiffness and damping of either isolator can be set as

desired. By joining these control methods appropriately, one

can produce an active system with variable stiffness and

damping referenced to inertial space. Therefore, these systems

can easily be configured as adaptive systems where, by using
sensed information from the disturbance environment, the

control law can be changed to optimize the isolation of the

payload. In the magnetic circuit actuator, the stiffness and

damping are not strictly independent, but the dependence is

minimal if certain control parameters are met. (For example,

a certain amount of damping is needed in order to overcome
instabilities.)

Baseline System Response to Base
Disturbances

In defining the dynamic base motion equations for both

systems, the stiffness and damping terms can be found by using

the appropriate control law needed for a stable negative
feedback system. The stiffness and damping solutions for both

baseline cases are presented in appendixes B and C. In

summary, the stiffness coefficient for the magnetic circuit
becomes

kikakp r[kx (1- rerto_ 2) + (kg + kr)(r 2+ r_)r2_o 2]
keq : k o+ (3)

( l - r2r Iw 2)2+ (r 2+ rl )2002

For the electromagnetic isolator, because the mass is being

statically supported by a passive spring, the stiffness is simply
K. By summarizing the damping coefficients for both isolators,

the magnetic circuit damping coefficient becomes

kikak p [( l - T271_2)(kg or- kr)T 2 -kg ( r2 + rl)]

C_q= (1 -rerlw2)2 +(r2 + rl)2co 2 (4)

and the electromagnetic damping coefficient is

c = - _kNI,,v (5)



where1,,,,. = Ea,.,.IR (Note: calculations assume negligible
inductance.) The magnetic circuit actuator system is more

complex than the Lorentz actuator because of the nonlinear
characteristics of the magnet. Also, since the stiffness is a

function of the excitation frequency, the natural frequency of

this system is not constant. However, for small excitation

frequencies, the natural frequency of the system can be
assumed to be constant.

In order to solve the equations by defining the base excited

system transfer function, as in appendix C, the dynamic

equations are transformed into the frequency domain by using

the Laplace transformation:

co
F(s) = F(t)e-_rdt (6)

Then, by transforming the transfer functions into the

frequency domain, the two equations become, for the magnetic

circuit system,

X 2_c0,,s + co,.

_(s) s2 +2_,,s+_0 _
(7)

and for the electromagnetic damping system,

2
X con

_(S) S2 + 2_wnS +Oa,2
(8)

The frequency response for both functions is obtained from
the relation

_(jw) = lim,__
(9)

where j = x/-7- 1, and s = jw. Thus, the transfer functions in
terms of frequency response are vectors in the complex plane.

The magnitude of vibration measured on the isolated payload

resulting from a sinusoidal excitation u (t) = B sin(wt) is the

vector length of X(j_)/U(jw). This value, a scalar, is called

the transmissibility function of the system. The transmissibility

is generally written as T = [(X/U)(jw)].
Therefore, the transmissibility functions become, for the

magnetic circuit system,

I 2 _,, 1t2

, (lo)

[1_(_'_212+ (2_')-/
,,_,,/j \ c_./...}

and for the electromagnetic damping system,

Tav -_-

1

X 'w) = 2+(2_Z)21I/2

(11)

By plotting these transmissibilities, one can see the effect of
changing the stiffness or damping of either system. The

transmissibility curve for the first case, shown in figure 4,
illustrates the effect of increasing the damping coefficient of

the magnetic circuit isolator system. The curves show that with

enough velocity feedback gain kr the system can become

overly damped. This gives rise to a well-damped resonance
but less isolation at excitation frequencies above V_, than

would be achieved with a less damped system. Increasing or

decreasing the position gain k_ shifts the natural frequency of

the system to the right or left because of the change in

equivalent stiffness.
The effect of increasing the damping coefficient of the

Lorentz electromagnetic damping system is illustrated in

figure 5. The curves show the response of the system to

increased velocity feedback (i.e., damping) determined from

the integration of an inertial sensor signal. The advantage of
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active damping derived from an inertial reference is that it

removes the resonant response, broadening and smoothing the

transition between the low-frequency and high-frequency

regions, while reducing both the transmission and the response,

particularly in the low-frequency range of interest. The effect

of such a system for large values of velocity feedback gain

can be understood by noting that it is equivalent to having a
passive damper attached between the isolated mass and a

virtual inertial reference. As the damping is increased, the

isolated mass becomes more and more tightly coupled to the
(motionless) ideal inertial reference. In other words, the

stronger the damping, the better the isolation. This type of
response is not seen in the pure suspension case because the

velocity term was determined from the derivative of a relative

position sensor, giving rise to the response shown in figure 4.
In order to relate these curves to the microgravity environ-

ment, one can use a g/go-versus-frequency plot, which was

generated from typical Microgravity Science Laboratory
(MSL) acceleration data (refs. 1 and 2) measured on a shuttle

flight, and superimpose the transmissibility curves on this data

to predict the isolation performance achievable for such

disturbances. By superimposing these curves, one can get a

rough idea of the capability of such a system in isolating against

such low-frequency disturbances. These curves are presented

in figure 6 (refs. 1 and 3). The figure shows selected peak

accelerations (open data points) typical of those observed on

shuttle missions (refs. 1 and 3) and an upper bound (line with
positive slope) that is intended to reflect the worst-case limit

for such an environment. The solid data points show the effect

of attenuating these mechanical disturbances through the
Lorcntz isolator and the resultant worst-case line.

Direct Disturbance Formulations for

Baseline Systems

As explained in the preceding section, the curves in figures 4
to 6 all demonstrate system response to base excited harmonic

motions. However, disturbances may also be generated direc-

tly on the payload itself. The sensitivity of the isolated payload

to a direct disturbing force is characterized by a term called

the isolated payload mobility. The mobility of the payload is

the vector magnitude ofX(s)/F(s). This parameter measures

the amplitude of the payload deflection per unit of force

amplitude. For direct disturbance only, the equations of motion

for both systems, are, for the magnetic circuit system,

d2x dx

m _ = F(t) - keq x - c,,q -- (12)dt

and lor the electromagnetic damping system,

d2x dx
m--=F(t) -Kx-c-- (13)

dt 2 dt
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Baseline System Response to Direct
Disturbances

Equations (12) and (13) can be placed in the Laplace operator

tbrmat, and from the definition of the vector magnitude
X (s)/F(s), the mobility equations fbr both cases are, for the
magnetic circuit system,

X(s) 1

F(S) rns 2 4_ CeqS -I- keq

(14)



andfor theelectromagneticdampingsystem,

X(s) 1

F(s) ms 2 + cs + K
(15)

In order to evaluate the effectiveness of these active systems,

the ratio of X(s)/F(s) for the active system to X(s)/F(s)

for a typical passive system is used. This ratio is called the

mobility effectiveness Xf(s). Therefore, if Xf(s) is unity,

then the active system behaves the same as the passive one.

If Xf(s) is zero, then no motion of the payload results from
a finite applied force. If Xf(s) is greater than unity, then the

active system amplifies the effect of the applied force,

increasing the payload motion. The equations for the mobility
effectiveness function for both cases, in terms of frequency

response, where the vector length of Xf(s) is ]Xf(jw)I, are

as follows: for the magnetic circuit system,

\_./_j \ w,,/,, .j

(16)

where for small excitation frequencies w.a = w,,, active

Wn = (keq/m) I/2, and Ceq/m = 2_o:., and for the electro-

magnetic damping system,

\ (17)

where clm= 2_,,, co, = (KIm) I/2, _ = I/2G,,(IlKm) i/2,

and c = G,.. In equations (16) and (17), _1 is the damping
coefficient of a passive spring and has a value of 0.05.

The effectiveness functions are plotted in figures 7 and 8.

The figures present the effectiveness of the active-feedback,
force-actuated vibration isolation systems as compared with

a passive system with a critical damping coefficient of 0.05,

which is typical for passive systems of the type used with low-

frequency system resonances.

Six-Degree-of-Freedom Prototype

Development

As shown by the transmissibility curves in figures 4 and 5,

there are many advantages in developing isolation systems with

the specific characteristics of both active relative and inertial

closed-loop isolation systems. Systems which exploit inertial

damping methods have been developed; however, they are

limited by the cutoff frequencies obtainable because of the

passive stiffness used for static support of the payload. Such
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a passive stiffness can be physically described in terms of a

classical spring where the stiffness must be large enough to

support the constant loading a payload experiences. This

required stiffness dictates the dynamic stiffness of the system,

once a transient disturbance is introduced. However, by
actively supporting the payload with an integral term of the

relative position, and by setting the relative position gain term

appropriately, one can tailor the effective dynamic stiffness

of a system to whatever value is desired, depending on the

user's requirements. In effect, one can design an active support
system with classical isolation characteristics with the

versatility of changing the dynamic stiffness and damping
parameters independently to produce a desired response. This

gives the ability to set the cutoff frequency of such a system

to much lower values, if the appropriate strokes are obtainable

in the working volume of the payload. However, for such a

relative sensor defined control system, increasing the damping

gain term gives better response at resonance, but impedes

isolation at frequencies above _/2wn. This response arises

from obtaining the damping coefficient of the system from a

relative velocity, which manifests itself in the 2_o/_o,, term

in the numerator of equation (10), shown in figure 4.

In developing the appropriate control logic for optimal

payload isolation, an accelerometer referenced to the moving
frame is joined with a relative sensor, which is needed for

support, in a feedforward capacity. By adding the appropriate
number of integrals of the inertial sensor to the appropriate
relative information, one can obtain the inertial isolation

response shown in figures 5 and 8 nonintrusively. Isolating
in such a manner, one can configure a system independent of

the actual payload, and by digitally controlling such a system,

the appropriate parameters can be programmed for specific
requirements.

In order to expand on these baseline isolation techniques,

one can design a one-degree-of-freedom isolator with a large
enough stroke to accommodate the payload motion needed in

one direction. However, in reality, one needs to accommodate

the translations and rotations in three-dimensional space.

Therefore, a prototype six-degree-of-freedom system was

designed with at least 0.762 cm (0.3 in.)possible displacement
in three translations at the actuator locations.

The translational dimensions and the physical layout of the

system used can be scaled to meet a variety of isolation and

integration requirements. The design described here is one

concept at a physical layout of a six-degree-of-freedom system
based on a feedforward/feedback controller described in the

baseline development. This prototype design uses attractive

electromagnets as the force-generating devices rather than the

linear Lorentz force magnets, in order to compensate for the

greater support necessitated by the 1-g field in the laboratory

environment. A layout of the physical system is shown in

figure 9, where the hexagonal platform is the isolated payload.

This system was designed for use in a laboratory environment;
therefore, the magnets are larger than would be needed in a

space-based system. The electromagnets designed have a

(a)

(b)

Z

L_.x
Y

(c)

(a) Perspective view.

(b) Top view.

(c) Side view,

Y

Figure 9.--Nonintrusive inertial isolation system layout.

suspension capability, at 4 A and 0.318 cm (0.125 in.) gap,
of about 444.822 N (100 lb) each. Since these actuators are

attractive, a total of 12 would be needed for control of all

6 degrees of freedom. However, for expediency in hardware

fabrication, only nine are used in the laboratory prototype.
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Figure lO.--One-degree-of-freedom inertial control system.

Gravity acts as the restoring force in the vertical direction.

Presently the triaxial actuators are controlled independently.
The relative motion of the payload with respect to the dynamic

support structure and the inertial acceleration of the dynamic
structure are measured at each of the three triaxial actuator

locations.

Summarizing this nonintrusive inertial isolation control

approach in one direction, one can see that the equation of

motion for a typical suspension configuration, equation (1),

must be changed to have the following form:

m _ + k,,q(X-U) + Ceq = 0
(18)

To design a system with the equivalent equation of motion

shown in equation (18), one must configure the closed-loop

control system around both the relative and inertial motion
of the dynamic support structure. By using this information

as the feedback/feedforward control signals, one arrives at the

following equation of motion for such a system:

m_t2 q-keq(X--U)-_t-Ce q _ _ eq_dt/=O (19)

The control block diagram for this control system is shown

in figure 10.

Concluding Remarks

The active magnetic systems described here have advantages

over passive isolators because of their ability to isolate against

the low frequencies present on the orbital carriers, as well as

their ability to implement an adaptive control to isolate against
both the direct and base excitations present in all pressurized

modules. Therefore, the optimal isolation of microgravity

science payloads will require an adaptive digitally controlled

system to optimize isolation coefficients to most effectively

prevent disturbances from perturbing the payload. To lower

the corner frequencies of such an active system, one would
need to use actuators with larger strokes. However, because

of the volume constraints present in space flight vehicles, an

isolated payload will have to follow these very low steady-
state accelerations resulting from aerodynamic drag, gravity

gradient effects, and other factors. To achieve the microgravity

requirements suggested by the Microgravity Sciences and

Applications Division for the Freedom space station for any

significant length of time, microgravity vibration isolation will

have to become a systems-engineered solution as well as an

experiment-specific concern. Thus, the requirements for
acceleration-sensitive microgravity space experiments will

dictate multistage isolation concepts which will combine both

passive and active systems, where the control of the center

of gravity of Freedom Station will be closed around such

microgravity steady-state accelerations.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, February 28, 1990



Appendix A

Symbols

A cross-sectional area of magnetic pole face

a average acceleration of gravity on the Earth's surface,
9.81 m/sec 2

B peak amplitude

b2 servo force per payload mass

c inertial electromagnet damping coefficient, N-sec/m

Ceq relative electromagnet damping coefficient, N-sec/m

Ea,,,, accelerometer voltage output, V

F direct disturbance, N

Fs isolator force, N

Fo force due to gravity on a system of mass m

Fp force exerted by magnetic pole face

fo accelerometer's natural frequency

G,. inertial velocity feedback gain term

g acceleration, m/sec 2

go acceleration due to Earth's gravitational field, m/sec 2

h air gap between pole face and armature

ho static equilibrium gap length

Ia,,,, electromagnet current, _ velocity

i current through a coil

ih

K

ka

keq

ki

k.

magnetic circuit

passive stiffness

magnetic circuit

magnetic circuit

magnetic circuit

magnetic circuit

magnetic circuit

current bias

coefficient, N/m

current amplifier stiffness

isolator stiffness, N/m

position gain

current stiffness

sensor amplifier gain

kr

ko

l

Ii

m

N

R

T

t

u

v

Xs(s)
x

0

#o

t,,,

J,p

(J

7"I

('_tl

OJ na

magnetic circuit velocity feedback gain

magnetic circuit position stiffness

length of pivoted beam

actuator location from pivot point

mass, kg

number of ampere turns

resistance, _2

transmissibility

time, sec

position of base

velocity, m/sec

mobility effectiveness

position of payload

angular displacement

permeability of free space, 47r× 10 -7 H/m

control voltage

proportional feedback voltage

active damping coefficient

passive damping coefficient

time constant of sensing circuit

time constant of differentiator

magnetic flux

magnetic field strength

excitation frequency

system resonance frequency

active system resonance frequency

10



Appendix B
One-Degree-of-Freedom Magnetic Circuit Actuator Suspension

The purpose of this appendix is to support the summary of

the attractive relative suspension system presented as back-

ground for the prototype feedforward/feedback isolation

system. The formulations of the relative suspension equations

for an isolation system are very similar to equivalent for-

mulations for rotating magnetic bearing systems. Such
derivations can also be found in many papers on the subject

of magnetic bearings (e.g., ref. 6).

In analyzing a one-degree-of-freedom, attractive, relative

magnetic actuator suspension system, as shown in figure 11,

small motions are assumed about some center position so that

a linearized approach can be taken. Also, the flux levels in

the core and armature of the electromagnetic circuit are

assumed to be below saturation. The total magnetic flux in

an air gap (ref. 6) is

_oANi
¢ - (B1)

h

Without considering leakage and fringe effects in the

magnet, the force exerted by the magnet is

¢2

Ft' : 2_ 032)

Therefore, substituting the relation for the magnetic flux in

an air gap gives the relation

t_oAN2i 2
033)

Fp- 2h 2

For both air gaps, the total force exerted is thus

/.toAN2i 2

F = 2Fp = h2 (B4)

---- I ---- 1

/

Figure 1 l.--Pbysical description of one-degree-of-freedom relative isolation

system.

Then the actual gap h and current i, for the system shown in

figure 11, have the form

h = ho - 110 035)

i = i b + Ai 036)

The negative sign occurs in h because as the mass of the system

moves up, the clearance in the gap decreases. Therefore,

substituting these relations for h and i into the force relation
for an electromagnetic circuit gives the following equation:

F _°AN2(ib + Ai)2= 037)
(h o - 110) 2

By assuming that both llO and Ai are small, equation 037) can

be approximated by a binomial expansion about the bias

current i b and the gap h. This then gives a linear relationship
between the force F and Ai, and makes it possible to use a

linear control scheme. The binomial expansion of equation

037) becomes

F_ l.toAN2i2 ( 21tO 2Ai)he° 1 + h--_+ ib/
(B8)

The static equilibrium equation for the one-degree-of-

freedom system as shown in figure 11 becomes

Thus,

1
mg : = Fol I (B9)

2

l #oAN2i 2
Fo = mg - (B 10)

211 hZo

Then, by setting Ai in the linearized force equation equal to

zero, one arrives at

1 #oAN2i 2

F = mg _ - koOll - ho2

21zoAN2i20ll
+ (Bll)

ho

Therefore, the position stiffness is, from equation 0311),

2#oAN2i 2
ko = - 3 03 12)

ho

11



A position displacement Ol 1 toward the magnet increases

the force in that same direction. An actual spring would apply

a force tending to restore the initial position of the beam at

ho. Now setting 0 in the linearized force equation equal to

zero gives a linearized force component proportional to the

bias current. This has been called a current stiffness (ref. 6);

however, a change in Ai does not tend to restore the beam

to its original position, but an increase in current does tend

to force the beam away from its steady-state value always

towards the magnet. The following relation demonstrates this
proportionality constant which arises from linearizing the force
around a bias current:

l I_,,AN2i_ 2#oAN2ibAi

F = mg _l - kiAi - + _ (BI3)V, h:

Therefore, this proportionality constant becomes

2#,,AN2it,

k, - h_ (B14)

The dynamic equation for the system of interest can be written
as

I #,,AN2i_ d20
mg -- + AF- _ + kiAi + ml_ -- + koOll (B 15)

211 ho dt 2

Since, from the static equilibrium case, F,, was set equal to

the force needed to support the beam at its equilibrium position,

1 /z,,AN't _,
F,, = mg - (B16)

211 ho

then the dynamic equation of this system around its static

equilibrium position, which is set by the amount of bias

current, can be represented by

d20
AF = kiAi + mll -- + koOll (B17)

dt 2

By assuming that the current i = ih + i,., where ib is the bias

current and i, is the control current, then Ai = i,.. And

assume that at equilibrium, or at 0 = 0, h = h,,. The dynamic

response equation then becomes

d20
AF = kj,. + ml 1 -- + koOll (B18)

dt 2

In order to stabilize the system, one needs to take the

derivative of the position signal and use both position and

velocity to control the system. This portion of the control

Figure 12.--Control block diagram.

0

circuit can be modeled as a position constant ks and a velocity
constant k_. These gains are adjustable and affect the stiffness

and damping coefficients acting on the system. The transfer

function of this portion of the circuit can be modeled as

Pc krT"2s
-- = kx + -- (B19)
Up 1 + r2s

_ kg+ (kg+kr)r2s
m

l+r2s
(B20)

Then current amplification is described by a constant as
follows:

i C

-- = k. (B21)
/)1"

A block diagram can be formed, as shown in figure 12, with
force as the input and position as the output. The transfer
function becomes

0 ms 2+ ko
- (s) = (B22)

F l _kikakp[kgL!kg+kr)7"2s]l

l+ms2+k o

In order to determine the theoretical stiffness and damping

coefficients, the dynamic equations of the one-degree-of-

freedom system are written and compared with a lumped

second-order model. By using the block diagram (fig. 12),

an equation involving position 0 and control current i,. can be
written as follows:

ic = 0 k"kp[ks + (kg + k_) r2s] (B23)
( 1 +r2s ) ( 1+r_s)

By using the relation

AF = kii,. + (ms2 + ko)0 (B24)

this system of equations can be put into matrix form as follows:

12



- ms 2+ ko ki 1
(B25)

Then, solving this matrix formulation of the system dynamic

equations for 0 gives the following equation for O(s)"

AF
0 (s) = (B26)

(ms2 + ko) +kikakp[kg + (kg + kr)r2s]
( 1 + r2 s) ( 1+ "qs)

where

AF = kii,. + (ms 2 + ko)O (B27)

Thus

kii,.+ (ms2 +ko)O
O(s) = (B28)

(ms 2+ ko ) + kikakp Ikg + ( kg -1- k r) r2s]
(1 +r2s) (1 +rls)

Setting this relation equal to the lumped second-order system

of a spring dashpot configuration gives the theoretical stiffness

and damping values for the closed-loop magnetic circuit

configuration:

0(j_) =
kiic + (ko-m_o2)O

( ko _ mw 2 ) + k_k_kt,[kg + ( kg + kr ) r,jw]
( 1+ rzjco) ( 1+ r]jw)

f(w)

(keq - mw 2) +jWCeq

(B29)

Thus, from the equality given in equation (B29), one obtains

the following relations:

f(w) = kii_ + (k o - mw2)O (B30)

_k_k_kp[kg + (kg + k_) rzJ'to]_ (B31)

and

5. Ikik_kp[kg-t- (kg-l-kr)r2j_]_
Ceq _ ..........

w (. (l+r_w)(l+rljw))
(B32)

Therefore, evaluating the equivalent stiffness and damping

for the closed-loop system gives the following relations:

kik.kp[kg( 1 - 7"2TIed 2) + (kg+kr) (r, + rt)r2 w2]
keq = ko +

( 1 - 7271 _2 ) 2 -at- (7" 2 -I- 7"1) 2¢02

(B33)

Ceq

kikakpl( 1 - 7"2TLO) 2 ) (kg+kr)r2-kg(r2+rl)]

( I --r2rlw2)2+ (r2+ rl) 2c02
(B34)

13



Appendix C
Theoretical Evaluation of Several Active Feedback Methods

The following analysis supports the background summary
of the inertial isolation techniques which, with the needed

relative support information, lead to the prototype design. The

approach taken for the response analysis on these one-degree-

of-freedom, inertially based isolation systems was based on

work by D. Schubert, Barry Controls Eastern Operation, Barry

Wright Corporation, Watertown, Massachusetts. Three physi-

cal models (fig. 13) will be analyzed to characterize isolation

with acceleration, velocity, and both acceleration and velocity

as the control feedback signals.

For the physical systems described in figure 13, two system
disturbances exist. The first is the base motion or a structural

\\\\\\\\\ \ -, ,\ _ \ \\\\ \ \\ ,\'\\\\\ \\\\'\\

(a)

_ss

_ -Fsa

(b)

l \\ ,.,\\ \\\\\\,.,\,.,\ ,,, \x \ \ \\-,,-,, \_

(c)

(a) Velocity feedback.

(b) Acceleration feedback.

(c) Acceleration and velocity feedback.

Figure 13.--Physical description of three one-degree-of-freedom inertial

isolation configurations.

excitation u. The second is an applied force F to the payload
mass m. Both terms u and F are considered to be functions

for which Laplace transformations can be realized. The isolator

force Fs on the active control configurations is generated by

sensing velocity, acceleration, or both, and driving an actuator

out of phase with the control signal.

The sensor function is to convert the velocity dx/dt of the

payload (or acceleration d2x/dt 2) into an electrical voltage

proportional to the excitation. The sensor output voltage E,,

is proportional to velocity dx/dt (or acceleration d2x/dt 2)

such that E,,_, = Avdx/dt (or E,._ = Aad2x/dt). The voltage Ev

is amplified with gain B,, (or B_), such that the output voltage

from the amplifier E,_v+,(or Eava) is E_vv = AvBvdx/dt (or
E_,_ = A_Bad2x/dt2). The voltage is then applied to a Lorentz

force actuator coil of resistance R(f_) having negligible

inductance. This coil is immersed in a magnetic field having

a field strength _b. Application of the voltage to the coil

produces a current having magnitude l,v_ = E, vv/R (or

I,,., = E_,JR). The effect of the current flowing through a

coil of N turns of wire results in a force F,, where

F+v = _bNl,v_.(or F+_ = _bNIa,,a). To simplify this, a gain term

G_, (or G,,) is applied to the feedback signal. This gain term
relates the velocity dx/dt (or acceleration d2x/dt 2) to the

force F_v (or F+,) such that F+.,,= Gvdx/dt (or F+,+= G,fl2x/dt2).

Now F+,, =- G_,dx/dt and F_,, = - G,d2x/dt 2, where the

negative sign denotes negative feedback. The sign applied to
the isolator force term F+ is governed by the direction the

servo current flows through the coil of wire.

The equations to model the three isolation systems are as

follows. The differential equation of motion for the active

isolation systems is obtained from the force balance method
by using Newton's first and second laws. Here the base motion

u is actually a time function, so that u = u (t), and the applied

force F is, in actuality, F(t). Thus, for velocity feedback,

d2x

m -- = F + Fs,. + K(u-x) (C1)
dt 2

Substituting and rearranging give the following equations:

d2x dx

m _ = F - Gv --7- + K(u-x) (C2)dt

d2x dx

m dr: + G_,--+ Kx =F+ Ku (C3)dt

For acceleration feedback,

d2x

m _t 2 = F + F++,_+ K(u-x) (C4)

14



Substituting and rearranging give the following equations:

d2x d2x

m _ = F - Go -dt 2 + K(u-x) (C5)

d2x d2x
--+Kx=F+Ku (C6)

m _ + G, dt 2

For acceleration and velocity feedback,

d2x

m _ = F + F_,, + F., + K(u-x) (C7)

Substituting and rearranging give the following equations:

d2x d2x dx

m -- = F - Go - G,. + K(u-x) (C8)
dt 2 _ dt

d2x d2x dx
m--+ G_--+ G,.--+Kx=F+Ku (C9)

dt 2 dt 2 dt

Base-Excited Vibration Response

To determine the base-excited response for the three vibra-

tion isolation systems, the force term F(t) is set equal to zero.

The base displacement term u (t) is assumed to be a sine wave

having a peak amplitude of B. Thus, u (t) = B sin (wt), where

is a frequency term. The three equations of motion become,

for velocity feedback,

d2x dx

m _ + G,.--dt + Kx = KB sin(wt) (CI0)

for acceleration feedback,

d2x d2x
-- + Kx = KB sin(cot) (CI1)

m _ + Ga dt 2

and for both acceleration and velocity feedback,

d2x dZx dx

m _ + G,, dt 2 + G,. dt + Kx KB sin(cot) (C12)

The equations are then transformed into the frequency

domain by using the Laplace transformation:

F(s) = F(t)e-_dt (C13)

--oo

The velocity system equation becomes

ms2X(s) + G,,sX(s) + KX(s) = KU(s) (C14)

the acceleration system equation becomes

ms2X(s) + Gas2X(s) + KX(s) = KU(s) (C15)

and the acceleration and velocity system equation becomes

ms2X(s) + G,,s2X(s) + GvsX(s) + KX(s) = KU(s) (C16)

The base-excited system transfer function is defined as

X(s)/U(s) = T(s). Thus, the transfer functions for the three

isolation systems are, for velocity feedback,

X(s) K
(C17)

U(s) ms2+Gvs+K

for acceleration feedback,

X(s) K
(C18)

U(s) ms 2+ Gas 2+ K

for both acceleration and velocity feedback,

X(s) K
(C19)

ms" + G.s- + G_s + KU(s) " "

Transforming these transfer functions into a standard

vibration notation gives, for velocity feedback,

X w2

U (s) s-+2_w,,s+coT_
(C20)

for acceleration feedback.

2
X con

_(s) = (c21)
s2+ b2---74 s2 + co_

s_f_

and for acceleration and velocity feedback,

2
X °2n
--(s) = (C22)

U s2 b_ _+ _ s" + 2_o_,,s + _.,
2rcf_,

where G,ffm = b2/27rJ 2, G,./m = 2_co,,, ,_ = I/2G,.( l/Km) 1/2.
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In this form the denominator of each transfer function is

called the characteristic equation. If the characteristic equation

has real negative roots, the vibration isolation system will not

oscillate: if it has complex roots, it will oscillate. If the base

motion displacement time function u (t) is a "pure sinusoid,'"

the steady-state frequency response in complex form is given
by letting s = j_0.

Thus, the frequency response is obtained by the function

x ixlU (j°_) = ,-oolim _(s)
(C23)

where s = jc0 andj = x/--L-i. This frequency response, which

is a vector, becomes, for velocity feedback,

X _0,_
(C24)

for acceleration feedback.

X _,7

_(j_0) = (C25)

co,i- 1 27rf,_
- + =____,

and for both acceleration and velocity feedback,

X COn

+ 2_,d¢

(C26)

The magnitude of vibration measured on the isolated payload
resulting from the sinusoidal excitation B sin(wt) is the vector

of length IX(jw)/U(jw)]. This value, called the trans-

missibility, is a scalar since the phase angle is not used. It is

generally written as TOw)= ]X(jw)/U(jw) I. Thus, the
transmissibility function for the systems of interest become,

for velocity feedback,

1 _1/2

\_,,/J \ _,,/..,J

(c27)

tbr acceleration feedback,

Ix fT.,, = _,,,(j_o) =

1-(1+ bz 2

and for both acceleration and velocity feedback.

(C28)

I 1t/2

= 1

27rf_// \_,,/j

(C29)

The data shown in figures 14 to 16 present transmissibility

versus nondimensional frequency as functions of the damping
term _ and the acceleration term b2/2rf_.

Force-Excited Vibration Response

Motion of the isolated payload can result from two excitation
sources. The first is base motion. The second results from

external forces applied directly to the isolated payload.
Referring back to the first differential equations of motion

(C3), (C6), and (C9), and setting the base excitation term u(t)

to zero allows the external force F(t) to excite the payload.
The equations of motion are, for velocity feedback,

d2x

m _ = F(t) - F,,.- Kx (C30)

for acceleration feedback,

d2x

m _ = F(t) - F.,,, - Kx (C31)

and for both acceleration and velocity feedback.

d2x

m _ = F(t) - F_, - F,,.- Kx (C32)

These equations can be placed in the Laplace operation format
for velocity feedback,

ms2X(s) + G,,sX(s) + KX(s) = F(s) (C33)

for acceleration feedback,

ms2X(s) + G_s2X(s) + KX(s) = F(s) (C34)

16



DAMPING

COEFFICIENT,

0

.I

..... .32

------ 1

3.2

to---- )_I
6 _

4

,2 --

.I I I l,l,lql I t I, lilltt]
.01 .02 ,04.06 .1 .2 ,4 .6 1 2 4 6 10

NOND[MENSIONALFREQUENCY,e/Un

Figure 14.--Inertial velocity feedback transmissibility curves.
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Figure 15.--Inertial acceleration feedback transmissibility curves,

and for both acceleration and velocity feedback,

ms2X(s) + G, s2X(s) + G,.sX(s) + KX(s) = F(s) (C35)

The sensitivity of the isolated payload to the disturbing force

F(s) is characterized by a term called the isolated payload

mobility. Mobility is the vector magnitude of X(s)/F(s).
Mobility measures the amount by which the payload is

deflected per unit of externally applied force. In Laplace

notation form, the equations for mobility become, for velocity

feedback,

X(s),. =
F

1

ms 2+ G,.s + K
(C36)

for acceleration feedback,

X 1
= , , (C37)

F (s)_ ms.+G,s-+K

and for both acceleration and velocity feedback,

X 1
9

ms ? + G_.s + G,s" + K
(C38)

These equations are made nondimensional, as was done for

the transmissibility functions, by dividing by the mass m of

the isolated payload and defining the following: co,, =

(Kim) 1t2, _ = I/2Gv(llKm) it2, and Galm = b212ref_,.

Making these substitutions gives, for velocity feedback,

X 1 (C39)
F (s)'' s- + 2_co,,s + co,7

for acceleration feedback,

X

_ (s)<, =
b-_ 2

s2 + ---:7" _ s2+w,,
2_-f,_

(C40)
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Figure 16.--Inertial acceleration and velocity feedback transmissibility curves.
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and for both acceleration and velocity feedback, for acceleration feedback,

X 1

(s).,, = (C41)

s2+2_tons+ b__2 s2+ 2
2rf,_ t0,

To show the effectiveness of the active systems, the ratio
of X(s)/F(s) for an active system to X(s)/F(s) for the

passive part of the system is used. This ratio is called the

mobility effectiveness Xf(s). Thus, if Xf is unity, then the
effectiveness of the active vibration isolation system in
reducing force-induced payload motion is zero, or the active

portion of the system does nothing. If Xf is zero, then the
effectiveness of the active portion of the system is complete,

and there is no motion of the isolated payload resulting from

a finite applied force• If Xf is greater than unity, then the

active portion of the vibration isolation system amplifies the

effect of the applied force, giving rise to more payload motion

with active feedback than without it. The equations for the

effectiveness function for the different systems are, for velocity
feedback,

"_ 2
s" + 2_ lto.s + w.

Xf(s),, S2 + 2_tonS +to _
(C42)

for acceleration feedback,

s2 + 2_ lto,,s + to_
Xf(s). = (C43)

s2 b_+ z---_ s2 '
2rf,_ +to,7

where _l = I/2c(1/Km) 1/2, and lbr both acceleration and

velocity feedback.

s - + 2$ t to,s + toT,
Xf(s).,, = (C44)

S2 + 2_tonS + b-_2_ s2 +to_

2_rf?,

In terms of frequency response, the vector length Xf(s) is
Ixfo'to)l. This value is obtained in the same manner as was

done for transmissibility. The equations for the effectiveness

of the systems become, for velocity feedback,

//to\212 / __nn!2_'/2

1- -- +__k.)__JJ_
l-(W---_2]'+(2_to) I

\to,,� J \ to,,� j]

(C45)

xf(j_____ I II l-(to')212-i'(2_lto'_2`_t:2

= __ \co./ j __ ,,to"_- "//-( (C46)

(l-_'-b9 )(to)212_
I \to,,/,, ,_ g

and for both acceleration and velocity feedback,

• I[ r 1- ("3_] _+ (2_' " _2 -N)1/2

L__\to"/J___b__to"/ _(

IXf(Jto\) I = 1_(1+2_o2)(_)] +(2,Z) _

\ton/m, b2 to 2 2 co

(C47)

Figures 17 to 19 represent the effectiveness of the force-

actuated vibration isolation systems for a passive damping ratio
of 0.05, which is typical of spring elements made of steel.

The figures show the effectiveness term IXf(jto)l as a function
of the nondimensional gain terms.
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